↳ ITRS
↳ ITRStoIDPProof
z
if(TRUE, x, y) → +@z(div(-@z(x, y), y), 1@z)
div(x, y) → if(&&(>=@z(x, y), >@z(y, 0@z)), x, y)
if(TRUE, x0, x1)
div(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
if(TRUE, x, y) → +@z(div(-@z(x, y), y), 1@z)
div(x, y) → if(&&(>=@z(x, y), >@z(y, 0@z)), x, y)
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
if(TRUE, x0, x1)
div(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
if(TRUE, x0, x1)
div(x0, x1)
(1) (DIV(x[0], y[0])≥NonInfC∧DIV(x[0], y[0])≥IF(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)), x[0], y[0])∧(UIncreasing(IF(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(2) ((UIncreasing(IF(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(IF(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(IF(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(5) (0 = 0∧0 = 0∧(UIncreasing(IF(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
(6) (y[1]=y[0]1∧-@z(x[1], y[1])=x[0]1∧y[0]=y[1]∧&&(>=@z(x[0], y[0]), >@z(y[0], 0@z))=TRUE∧x[0]=x[1] ⇒ IF(TRUE, x[1], y[1])≥NonInfC∧IF(TRUE, x[1], y[1])≥DIV(-@z(x[1], y[1]), y[1])∧(UIncreasing(DIV(-@z(x[1], y[1]), y[1])), ≥))
(7) (>=@z(x[0], y[0])=TRUE∧>@z(y[0], 0@z)=TRUE ⇒ IF(TRUE, x[0], y[0])≥NonInfC∧IF(TRUE, x[0], y[0])≥DIV(-@z(x[0], y[0]), y[0])∧(UIncreasing(DIV(-@z(x[1], y[1]), y[1])), ≥))
(8) (x[0] + (-1)y[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ (UIncreasing(DIV(-@z(x[1], y[1]), y[1])), ≥)∧-1 + (-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧-2 + (2)y[0] ≥ 0)
(9) (x[0] + (-1)y[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ (UIncreasing(DIV(-@z(x[1], y[1]), y[1])), ≥)∧-1 + (-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧-2 + (2)y[0] ≥ 0)
(10) (x[0] + (-1)y[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ -2 + (2)y[0] ≥ 0∧-1 + (-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧(UIncreasing(DIV(-@z(x[1], y[1]), y[1])), ≥))
(11) (x[0] + -1 + (-1)y[0] ≥ 0∧y[0] ≥ 0 ⇒ (2)y[0] ≥ 0∧-2 + (-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧(UIncreasing(DIV(-@z(x[1], y[1]), y[1])), ≥))
(12) (x[0] ≥ 0∧y[0] ≥ 0 ⇒ (2)y[0] ≥ 0∧(-1)Bound + y[0] + (2)x[0] ≥ 0∧(UIncreasing(DIV(-@z(x[1], y[1]), y[1])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = 2
POL(DIV(x1, x2)) = (-1)x2 + (2)x1
POL(FALSE) = 2
POL(IF(x1, x2, x3)) = -1 + (-1)x3 + (2)x2
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
DIV(x[0], y[0]) → IF(&&(>=@z(x[0], y[0]), >@z(y[0], 0@z)), x[0], y[0])
IF(TRUE, x[1], y[1]) → DIV(-@z(x[1], y[1]), y[1])
IF(TRUE, x[1], y[1]) → DIV(-@z(x[1], y[1]), y[1])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
if(TRUE, x0, x1)
div(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
if(TRUE, x0, x1)
div(x0, x1)